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The problem of finite-amplitude thermal convection in a porous layer with finite 
conducting boundaries is investigated. The nonlinear problem of three-dimensional 
convection is solved by expanding the dependent variables in terms of powers of the 
amplitude of convection. The preferred mode of convection is determined by a 
stability analysis in which arbitrary infinitesimal disturbances are superimposed on 
the steady solutions. Square-flow-pattern convection is found to be preferred in a 
bounded region r in the (Yb, yt)-space, where Y b  and yt are the ratios of the thermal 
conductivities of the lower and upper boundaries to that of the fluid. Two-dimensional 
rolls are found to be the preferred pattern outside r. The qualitative features of the 
convection problem appear to be essentially symmetric with respect to Yb and yt. The 
dependence of the heat transported by convection on Y b  and yt is computed for the 
various solutions analysed in the paper. 

1. Introduction 
The present paper studies the problem of nonlinear thermal convection a t  small 

amplitude in a horizontal porous layer with finite conducting boundaries. 
The problem of thermal convection in a porous medium is simpler than the 

corresponding one in an ordinary medium, since the equations of motion describing 
convection in a porous layer are of lower order than those describing BBnard 
convection. The qualitative features of thermal convection in a porous medium are, 
however, the same as those in an ordinary medium. Hence the problem of thermal 
convection in a porous medium is mathematically a simple one, which conveniently 
can be used to study nonlinear effects such as the preferred flow pattern. 

The linear stability for the onset of convective flow in a porous medium was first 
investigated theoretically by Lapwood (1 948). The subsequent nonlinear investiga- 
tions of the problem such as those by Palm, Weber & Kvernvold (1972) and Straus 
(1974) are based on the assumption that the upper and lower boundaries have infinite 
thermal conductivity. Although this assumption is often well approximated in 
laboratory experiments, many convection problems in engineering and geophysics do 
not exhibit well-conducting boundaries, and the ratios Yb and yt between the thermal 
conductivities of the lower and upper boundaries and that of the fluid must be taken 
into account as additional parameters. 

The importance of the influence of the parameters Y b  and yt on small-amplitude 
nonlinear BBnard convection was first demonstrated by Busse & Riahi (1980, 
henceforth referred to  as BR), who considered the case where Yb and yt are equal 
(yb = yt = y )  and assumed that the boundaries are nearly insulating (y  + 1). They 
found that the critical wavelength of the horizontal motion is proportional to y-4 and 
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that square-pattern convection is preferred in contrast with two-dimensional rolls 
that represent the only form of stable convection in a symmetric layer with isothermal 
boundaries. 

The goal of the analysis of the present paper is to isolate the nonlinear properties 
of thermal convection for arbitrary values of the parameters Yb and yt. An important 
result of the present study is that  there exist a bounded region r in (Yb, yt)-space such 
that the preferred convection pattern is that  of squares for (yb, y t )  E I?. The preferred 
flow patternis, however, two-dimensional rolls for (yb, yt)  $ r. This result demonstrates 
the enormous influence of the thermal boundary conditions on the preferred flow 
pattern. 

The additional and interesting effect of the lateral boundaries in a finite system 
containing fluid-saturated porous material that  have recently been studied for 
isothermal upper and lower boundaries (Zebib & Kassoy 1978; Straus & Schubert 
1978, 1979, 1981 ; Schubert & Straus 1979) is expected to have significant influence 
on the realized flow pattern. This effect, however, is not considered here, since we 
are interested, in the present investigation, in studying the already complicated 
problem of the effect of arbitrary thermal-conducting upper and lower boundaries 
on nonlinear processes. We therefore assume that the fluid layer is infinitely long in 
the horizontal direction, which is appropriate for various applications in cases where 
the horizontal length of the layer is large compared to its thickness. This assumption 
enables us to understand the actual nonlinear properties and the convective motions 
that are not influenced by the lateral boundaries, and provides the foundation on 
which more detailed models can be built. 

Sections 2 4  deal with the mathematical formulation of the problem, and the 
general description of steady convection and stability analysis. The steady solutions 
are discussed for various cases in $ 5 ,  which is followed by some general discussion. 

2. Mathematical formulation 
We consider an infinite horizontal porous layer of depth d filled with fluid and 

heated from below. The layer is bounded above and below by two half-spaces with 
thermal conductivities hf and respectively. I n  the steady static state, a constant 
heat flux traverses the system such that temperatures TI and T2 are attained a t  the 
upper and lower boundaries of the fluid. It is convenient to use non-dimensional 
variables in which lengths, velocities, time and temperature are scaled respectively 
by d ,  A/dpoc, d2poc /h  and ( z - Z ) R - l .  Here h is the thermal conductivity of the 
porous medium (fluid-solid mixture), po is the reference density of the fluid, c: is the 
specific heat at constant pressure and R is the Rayleigh number (defined below). Then, 
with the usual Boussinesq approximation that density variations are taken into 
account only in the buoyancy term, the Darcy-Boussinesq equations are 

B - + u . ~ u  = - ~ ~ + e ~ - ~ ,  (2 ) (2 . la)  

v . u  = 0, (2.1 b )  

(2.1 c) 
ae 
- + u . v e  = Ru.z+v2e. 
at 

Here u is the velocity vector, p is the modified deviation of pressure from its static 
value, 0 is the deviation of temperature from its static value, z is a unit vector in 
the vertical direction, B-l = vd2poc/AK is the so-called Prandtl-Darcy number and 
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R = PgK(T,-T,)dp,,c/vh is the Rayleigh number, with /3 the coefficient of thermal 
expansion, v the kinematic viscosity, K the Darcy permeability coefficient and g the 
acceleration due to gravity. 

The velocity vector u in (2.1) is defined according to Darcy's law as an average over 
the microscale of the porous medium. We shall assume that the microscale is small 
enough compared with any scale sizc of the flow for u to remain a well-defined 
quantity. 

It is convenient to introduce a Cartesian system of coordinates, with the origin on 
the centreplane of the layer and with the z-coordinate in the vertical direction. The 
boundary conditions for 6 and u are 

u . z = O  at z = f t ,  (2.2a) 

(2.26) 

(2.2c) 

where Yb = h;/h, yt = hf/h, and 6: and 0: describe the deviation from the static 
temperature distribution in the spaces z < -+ and z 3 t respectively. Since we have 
used the Darcy constitutive assumption in order to replace V2u with -u in (2.1), we 
cannot impose boundary conditions on the tangential components of u. Equations 
(2.2) correspond to finite conducting boundaries through which no flow occurs. 

We shall restrict our attention to the case of infinite Prandtl-Darcy number, in 
which case the left-hand side of ( 2 . 1 ~ )  vanishes. The physically appropriate value 
B = 0 follows from extraordinary small values of the permeability coefficient K in 
porous material: in sand K = 0(10-8) cm2; in very porous fibre metals 
K = 0(10-4) em2. 

The governing equations (2.1) can be simplified by using the general representation 

U = 6@+&$, ( 2 . 3 ~ )  

6 = V x V x z ,  E = V X z  (2.3 b )  

for the divergence free velocity vector field u. By taking the vertical component of 
the curl of (2.1 a )  i t  can be shown that the toroidal part V x Z$ of u must vanish for 
B = 0. Taking the vertical component of the curl of the curl of (2.1 a )  and using (2.3) 
in (2.1 c) yields the following equations: 

A2(V2@+6) = 0, ( 2 . 4 ~ )  

(2.4b) 
ae 
at 

V26-RA2@ = 6 0  .VB+--, 

where 

Equations (2.4) must then be solved subject to the boundary conditions ( 2 . 2 b ) ,  

@ = O  a t  z = k i .  (2.5) 
( 2 . 2 ~ )  and 

In the following sections we obtain the solutions by using the method of Schluter, 
Lortz & Busse (1965), treating the amplitude t: of convection as a small parameter. 

6 - FLM 129 
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3. Finite-amplitude steady convection 
Using the energy method (Joseph 1976), i t  can be showneasily that small-amplitude 

steady solutions yield the lowest Rayleigh number R for which non-decaying solutions 
exist for the governing equations and the boundary conditions dorived in $2.  It is 
therefore appropriate for our small-amplitude convection analysis to consider the 
following expansions for 8, CD and R in powers of c :  

R = R,+eRl+e2Rz+ ... . 
1 (3.1) 

Upon inserting (3.1) into (2.4) and disregarding the quadratic terms, we find the 

( 3 . 2 ~ )  

(3.26) 

linear problem 
A2(V2CD, + 8,) = 0, 

VV,  - RoA2@, = 0. 

The general solution of (3.2) with the boundary conditions 

@ - --ayb 8 , = 0  a t  z = - i ,  1 ( 3 . 3 ~ )  

( 3 . 3 b )  

(see appendix A for the derivation of the thermal boundary conditions) can be written 
as 

(3.4) 

(We have introduced in (3.3) the horizontal wavenumber a of the linear planform 
function w(x, y).) The function w actually has the representation 

N N 

n=-N n=-N 
w(z,y)  = Z c,w, 5 C. c,exp (iK,.r),  (3.5) 

(3.6) 
and satisfies the relation 

Here an angle bracket indicates an average over the fluid layer, r is the position vector, 
and the horizontal wavenumber vectors K, satisfy the properties 

A ~ W  = -a2 w, (ww> = 1. 

K, . z = 0, IK,J = a ,  K-, = -Kn. (3.7) 

The coefficients c, satisfy the conditions 
N 

n=-N 
c c,c; = 1, c; = CL,, 

where the asterisk indicates the complex conjugate. The functions f and g introduced 
in (3.4) are the unique solutions of the following system of equations: 

(D2-a2) f = -g, q2) = 1 ,  (D2-a2)g = -R,ay,  

f =  (D-aay,)g = 0 a t  z = -1 2 ,  

f =  (D+ay,)g = 0 a t  z = $, 

(3.9) 1 
where D = d/dz.  The functionfis also normalizccl so that 0') = 1.  The system (3.9) 
represents an eigenvalue problem with eigenvalue R,, and the lowest value R, of R, 
can be obtained after minimizing R, with respect to CL (for given yh and yt). 
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In  the order e2, (2.2), (2.4) and (2.5) become 

A2(VZ@, + 8,) = 0, 

V28, - R, A2 @ 2  - RIA2 @ I =  6@, . V81, 

(3.10a) 

(3.10 b)  

( 3 . 1 0 ~ )  @, = 8, = z-yb82s a% = O a t  z = -1 22 

CD, = 8, = -+ 8% ytOPs = O a t  z = 4, (3.10d) 

where the bar indicates the horizontal average and OZs is defined in appendix A. See 
also this appendix for the derivation of the thermal boundary conditions given by 
(3.10c), (3.10d). 

The solvability conditions for the equations of higher order in 6 require us tJo define 
the following special solutions B,, and Q1, of the linear system of equations (3.2)-(3.3) : 

82 

(3.11) 

Multiplying ( 3 . 1 0 ~ )  by 01,, (3.10b) by - R;' 01,, adding and averaging over the whole 
layer yields R, = 0 (appendix B). Equations (3.10) then yield 

l , p = N  
= Z ~ ( Z , ~ z p ) C I C p W I W p + G ( Z ) ,  ( 3 . 1 2 ~ )  

D2G(z)+02 = - Z [ D 2 - 2 ~ 2 ( 1  + ~ l p ) ] F ( ~ , ~ z p ) ~ l ~ p ~ l ~ p ,  ( 3 . 1 2 b )  

I , P = -  N ,  1 + - p  

l , p = N  

l , p = - N ,  l + - p  

where $ z p  = K p ) ,  

F is a function of z and q?lp, and G is a function of z only. These two functions satisfy 
the following equations and boundary conditions : 

[ ( D 2 - a ~ ) 2 - I z R O a ~ ]  F = az(gDj~lp--fDg), 

D4G = - U2D(fg), 

G = D 2 G = 0  a t  z=+' - 2, 
(3.13) 

In  the order c3, (2.2) become 

AZ(V2@,+8,) = 0, ( 3 . 1 4 ~ )  

V28, - Iz, A, CD, - R, A, CD1 = SCP, . V8, + 6CP2 . VB,. (3.14b) 

Multiplying ( 3 . 1 4 ~ )  by CD;,, (3.14b) by - RglB,*,, adding and averaging over the whole 

(3.15) layer yields 

The average product (8,*,(6@, . V8,)> has no contribution in (3.15) since i t  vanishes 
(see appendix B). Equation (3.15) can be simplified to the form 

-R, (o,*,Az@l> = (0,*,(6@1 .vez)> + (0,*,(6@, .VO,)>. 
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where F, and F, are functions of & l p  and are given by 

Zq = -."gDfLD".;]F), 

F, = -a2 ( f g [ D " ~ ~ i ]  DF), 

G, =-.'((f'D3G), l $ = a 2 ( f g )  

The integral expression (w,*wmwlwp) in (3.16) differs from zero only if 

-K,+Km+K,+K,=O. 

This condition yields a much-simplified set of equations 

where 

N 

m=-N 
R2FOc, = X T,,c,c,c~ (n  = -N ,..., - 1 , 1 ,  ..., N ) ,  

( $L(l)+Gl (m = kn), 
1 2L($,,) + G, (otherwise) 

Tnm = 

The function L(&lp)  introduced in (3.20) is defined as 

(3.17 a )  

(3.17b) 

( 3 . 1 7 ~ )  

(3.18) 

(3.19) 

(3.20) 

(3.21) 

The solutions of (3.19) and (3.8) are given below in the so-called 'regular' case, in 
which all angles between two neighbouring K-vectors are equal : 

(3.22) 

Using the approximate relationship 

H, = (we) z E 2 a 2  ( f g }  x a?(R- R,) R,' ( f g >  (3.23) 

for the heat transported by convection, we find from (3.20), (3.22) and (3.23): 
in the case of two-dimensional solution in the form of rolls 

N = 1 ,  H,. G H~ol l s (R-Rc) - l  = 2Ft[L(1)+2G1]-'; (3.24 a)  

in the case of square-pattern convection 

N = 2, $lz = 0, Us = HEquares(R-Rc)-l = 4F~[L(1)+4L(0)+4GlJ-1; (3.245) 

and in the case of hexagonal cells 

N = 3, $12 = $23 = $31 = 4, 
f$exagons = H ( R - R  , )- - - 6Fi[L(l)+6G1+4L(+)+4C(-$)]-1. ( 3 . 2 4 ~ )  

4. Stability analysis 
The analysis of the nonlinear steady-convection equations has shown that many 

solutions could exist through the solvability conditions (3.19) even though this 
manifold represents only an infinitesimal fraction of the manifold of the solutions (3.4) 
of the linear problem. To distinguish the physically realizable solution among all 
possible steady solutions, the stability of @, 8 with respect to arbitrary three- 
dimensional disturbances 6,g must be investigated. The equations for the time- 
dependent disturbances with addition of a time dependence of the form exp (crt) are 
given by 

A,(V2&+g) = 0, (4.1 a )  

(4.1 b )  - ~ + v % - R A ~ ~  = 6 6  . v 8 + 6 @  .vg. 
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When the expansions (3.1) is used in (4.1) it  becomes evident that  the stability 
equations can be solved by an analogous expansion 

(:j = (q + €  ( k )  +... 
0- VO Cl 

We also restrict ourselves to  those disturbances for which Ro is minimized with respect 
to a. Then the most-critical disturbances are characterized by go = 0. Using the 
representation 00 

?Z(Z,Y) = C Enwn (4.3) 
n=-m 

for the horizontal dependence of the general three-dimensional disturbance, we 
consider (4.1) in orders en (n 2 1 ) .  The possibility of a non-vanishing positive 
coefficient cn appears first in the order e2, where (4.1) become 

A2(V26,+e",) = 0 ,  (4.4a) 

(4.46) 

Here the solutions gl and 6l have the same form as the corresponding steady solutions 
8, and CDl, provided that the horizontal dependence of the steady solutions is replaced 
by the expression (4.3). The solutions 62 and e",, however, have the form 

-.-,e; + ~ 2 8 , -  R ~ A , ~ ~  - R, A,&, = s6,. ve, + 6 q  . vG2 +&a2 . v 8 ,  +m2. vS,. 

l=w ,  p = N  N 

l=-m, p=-N m=-N 
a2 = X 2F(z ,  J l P )  Fl~pwlwp+G(z )  C 2Emck, (4.5a) 

1 + - P  

l = e ,  p = N  N 

2 ( 0 2 - 4 )  F(z,4, ,)ElcPw,w,-D2G(z) 2c",cZ. (4.5b) 
m=-N 

c 6 - _  
2 -  

l z - 0 0 ,  p = - N ,  l + - P  

Multiplying ( 4 . 4 ~ )  by @ f n ,  (4.4b) by -RFIO,*,, adding and averaging over the whole 
layer yields the following set of equations : 

x (ernez F p  + C m E 1  c p  + Em c1 c p )  (w,* w, w1 wp>. 

Using (3.18)-(3.19) in (4.6) yields 
N -  

u, (92) En + c, c T,, c; Em = o, 
m=-N - 

where Trim = Tam +Tn, -m.  

Using (3.20) in (4.7 b ) ,  we find that the matrix Pnm has the symmetries 

T n n = q l  ( n = - N  ,..., - 1 , 1 , . . . ,  N ) .  

(4.6) 

(4 .7a )  

(4 .7h)  

(4.8a) 

(4.8b) 

Using (4.8) and following either Schluter et al. (1965) or BR, it follows that N 
eigenvalues u2 are zero and the rest of the eigcnvalues are real and satisfy the 
characteristic equation - 

det[rr2(g2)Snm+Tnmc~cnl = 0 (n,m = 1 ,  ..., N ) .  (4.9) 
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This equation is a polynomial equation in cr2 of degree N of the form 

N 

n=o 
C angf = 0, (4.10) 

(4.11) 

n,m=1 I 
m>n 

The coefficient aN is clearly positive. Using (3.8), (3.20), (3.22) and (4.76) we find that 

(4.12) 

Using (3.17c),  (3.23) and the fact that H ,  is positive, i t  follows that F, is positive. 
It is also expected that RT1ls is positive (as the results in $5 indicate). Hence aN-l 
is positive. Since all the roots of (4.10) are real and the coefficients aN and aNP1 are 
both positive, we conclude from the sign rule of Descartes for polynomials that a t  
least one root of (4.10) is positive, provided that the coefficient aNP2 is negative. Hence 
a steady solution ( N  > 1 )  is unstable if 

- T = F R T O l l S .  
a N - 1 -  11 0 2 

aN-2 < 0. 
Equation (4.13) clearly holds if 

Trim > !Tnn > 0 (m > n). 

(4.13) 

(4.14) 

For N = 1 the two-dimensional flow in the form of rolls, (4.9), yields 

grolls (g2 )  = - F 0 2  RrOllS. (4.15) 

Hence gflo1lS < 0 and rolls are stable. 
For three-dimensional flow in the form of squares ( N  = 2), (4.9) implies that 

squares are stable only if the condition (4.13) does not hold. 
So far the analysis has been restricted to disturbances that coincide with the basic 

vectors of the steady motion. We now consider the stability of the steady motion 
with respect to disturbances in the form of rolls that are not coincident with the basic 
vector of the steady motion. We define Kr to be the wavenumber vector of such 
disturbances. The horizontal dependence of disturbances can be written as 

(4.16a) 

where i ~ i ,  = exp fig,. r). (4.16b) 

Multiplying (4.4a) by fG?, (4.46) by -Rig$,*, adding and averaging over the layer 
yields the following set of equations: 

( g 2 )  Er + R24Er = Ql Er + C [ - (Jml  + J m p )  4 + 41 Lcm Elcp (G?wm Glwp) 
1+-p 

+ cm c1 E p  (GT wm wliTip)]. (4.17) 

For the steady regular solutions, (4.17) simplifies to 

l N  
N m=-N 

(4.18) -$g2(g2)  + R2Fo = GI+- C L(4rm). 
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For the steady two-dimensional solution in the form of rolls, (4.18) yields 

rzZg2) = L(1)-2[L($rl) +L( -$r1)1. (4.19) 

For the disturbance rolls that  are inclined a t  an angle of 90' to the basic wavevector 
K, of the steady motion (Jrl = 0), (4.19) yields a positive u2 provided that the 
condition (4.13) does not hold. Therefore steady rolls are clearly unstable if the steady 
squares are stable or vice versa. 

For the steady solution in the form of squares, (4.18) yields 

U z W )  = B L ( ~ ) +  ~ L ( o )  - h($rI) -Q-$rl )  - ~ ( $ r 2 ) - ~ ( - $ $ r 2 ) 3  1 (4.20) 
where l$r21 = ( 1  -$;1P. J 

5. Steady solutions 
5.1. The case of injni te ly  conducting boundaries 

In  this subsection we specialize the analysis of 803 and 4 to  the ease where the 
boundaries are isothermal. yb = yt = 00 and we have the following results: 

f ( z )  = 2: cosnz, g ( z )  = (nZ+aZ)24 cosnz, 

R, = a-"(nZ + a2)2, R, = 4n2, a, = n, 

G(z )  = in sin2nz, 

The function L(&') defined in (3.21) and the constants G, and F, become 

clearly rolls exhibit a higher heat transport than either squares or hexagons. 
The condition (4.14) becomes 

(5.4) 

Equation (5.4) clearly holds since 0 < $*, < 1 .  Hence all three-dimensional solutions 
are unstable and the only stable flow pattern is that of rolls. This result is identical 
with that obtained by Schluter et al. (1965) for the case of an ordinary medium. The 
rolls are also stable with respect to any disturbance which is inclined at an arbitrary 
angle to the basic wavevector of the steady motion, since (4.19) gives a negative uz 
for any $rl (0 < I$J < 1 ) .  
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5.2.  The case of poorly conducting boundaries 

We now consider the other extreme case where the boundaries are poorly conducting. 
We avoid to consider the case of zero-conducting boundaries since, as was pointed 
out in BR, i t  is physically unrealistic. 

We shall discuss briefly the finite-amplitude analysis and the main results of the 
problem for the case where yb = yt = y 4 1 .  The reader is referred to BR for 
additional details and background regarding the nonlinear convection in a layer with 
such boundaries. 

As in BR, i t  is found again that the functional dependence of the value a, on y 
that minimizes R is yj.  Thus i t  is assumed that a = qyi, where q is a constant of order 
unity. The linear analysis in BR, as well as in the present study, demonstrates that 
the value q, is independent of y.  It turns out that  the constant ,u = yg could be used 
as an additional perturbation parameter and the solutions On, On can be obtained 
in terms of a series in powers of y :  

(5.5) 

and analogous expression for R,. The analysis can be carried out in direct analogy 
to  that discussed in BR, and we find the following results: 

f ( z )  = ( + - 3 z 2 ) + a 2 ( - & ? - & z 4 + ~  
960z -&)+O(y2), 1 (5 .6a)  

g(z)  = 1 + a 2 ( ~ z 4 - - ~ z 2 + ~ ) + o ( p 2 ) ,  J 

a2 
4 !  

G(z )  = -((tz5--:z3+&), 

( 5 . 6 ~ )  

(5.7) 

The function L(5JZp) and the constants G, and Fo are given as 

1 m z p )  = iba45J;p> 

G, = &a4, F, = &a2. 

Using (3 .24)  and (5 .7)  we find 

H y l l S  = 5(R-R ) HZcluares = 2 ( R - R  
(5.8) 

C 

c ,  

Hhexagons = 5 
4 W-R,). 

Equations (5.8) indicate that squares exhibit a higher heat transport than either rolls 
or hexagons. 

According to (4 .15)  rolls are stable. For squares conditions (4 .13)  or (4.14) does not 
hold which implies that  squares are also stable. However, by thc result obtained in 
$ 4 ,  rolls become unstable with respect to disturbance rolls that  are inclined a t  an angle 
of 90° to the basic vector of the steady rolls. I n  fact the growth rate given by (4 .19)  

(5.9) 
becomes 

g2 (9')  = &a4(1 - 4 $ ~ ) ,  
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which shows clearly that u2 has the largest positive value for & = 0. This result gives 
an indication of the preferred flow pattern, which consists of square cells (superposition 
of two roll solutions a t  a right angle). The same arguments and analysis discussed 
in BR could be carried out here to conclude that squares are the preferred flow pattern 
for the case discussed above. 

5.3. The case of arbitrary conducting boundaries 
We now consider the general case where the boundaries have arbitrary thermal 
conductivity. The solutions to (3.9) and (3.13) are 

4 

,=1 
f(z) = Z d, exp (riz), 

1 ,  
g(z )  = aR; Z ( -  l ) , d i  exp ( r i z ) ,  

i=l 

G(z)  = X [A,,, exp (2ri z )  + d,,, z4-,], 
i-1 

1 1  
where rl = - r3 = r5 = (a2 + &~4, rz  = - r, = (a2 - C Z R ~ ) ~ ,  

The expressions for the coefficients d, (i = 1,  ..., 12), A,  (i = 1 ,  ..., 8)  and 
B, (i = 1 ,  ..., 4) introduced in (5.10) are lengthy and are not given in this paper. The 
complete expressions for these as well as the functions L ( J l p ) ,  G, and F, are given 
in an internal report which can be made available to the reader upon request. 

When the general solutionsf(z) and g(z )  given in (5.10) are used in the boundary 
conditions and the normalization condition for f ( z )  given in (3.9), they yield the 
expressions for d, (i = 1 ,  ..., 4) and the following equation for R,, a ,  Yb and y t :  

d l ( - r l+aYb)  exp (-irl)+d2(r2-ayb) exp ( - t r 2 )  

+d,(r,+ayb) exp ($ i ) -dg(rz+aYb)  eXp (irz) = 0. (5.11) 

R, is thus a complicated implicit function of a, yt and Y b  through the equation (5.1 l ) ,  
and numerical computations are required to determine R,(a) and R, for given yt and 
Yb. The computations are based on a method of half-interval and were carried out 
a t  the Computing Centre of the University of Illinois. Numerical computations of Ro 
for various values of Y b  and yt demonstrate that  R, is symmetric with respect to yb 

(5.12) and y t :  

The three most interesting special cases are as follows. 
(i) Both boundaries have the same conductivity y ,  yt = Yb = y. Neutral curves for 

values of y = 0 ,1 ,4  and 00 are shown in figure 1 .  The results for y = 0 and y = 03 

are clearly consistent with the expressions for R, given in (5.1) and (5.6). In  the actual 
computations for this case and the next two, the value of 1O1O is chosen for co. 

(ii) One of the boundaries (say the upper one) is non-conducting, the other has 
arbitrary conductivity y ,  yt = 0, Y b  = y .  Neutral curves for values of y = 0 , 1 , 4 ,  and 
00 are shown in figure 2. 

(iii) One of the boundaries (say the upper one) has infinite conductivity, the other 
has arbitrary conductivity y ,  yt = 00, yb = y.  Neutral curves for the same four values 

RO(a,  Yb, Ttf = R O ( a ,  Yt, Yb). 
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Yt  = Y. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 

cy 

FIGURE 2. Neutral curves for different conductivity ratios y in the case yt = 0, yb = y .  
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FIGIJRE 3. Neutral curves for different conductivity ratios y in the case yt = 00, yb = y .  

of y as considered in other cases are shown in figure 3. The value of R, for a given 
a in this case is clearly larger than the corresponding one in case (ii). The functional 
dependence of R, with respect to a in case (i) is seen to be approximately intermediate 
between those in the other two cases, 

The minimum value R, of R, with respect to a attained a t  some a = a, for given 
Y b  and yt is obviously of importance. Values of R, and a, for different values of yt 
and Y b  (for the three cases defined above) are obtained by an additional modified 
method of half-interval and are presented in table 1.  From these results and (5.12) 
it  is seen that R, increases with either Y b  or yt or both. Thus the most-stable situation 
corresponds to infinite conducting boundaries, and the most-unstable one corresponds 
to insulating boundaries. R, is also seen to be most sensitive to Y b  and yt in the 
mid-range of these parameters. 

Using (5.10) in (3.17), (3.21) and (3.24), the values of the heat-transfer coefficients 
H,, H ,  and Hh are computed for the five different cases and are presented in table 
2 .  The main results for each of these cases are as follows. 

I. The case yb = yt = y ,  0 Q y Q co. Each of the quantities H,,  H,  and Hh 
increases with y and reaches its peak a t  some value of y in the neighbourhood of y = 1 
and then decreases with further increase in y .  H ,  = max (H, ,  H,, Hh)  for all 
y < y1 (1 < y1 < 4). H ,  = Max (H,, H,, Hh) for all y > y l .  Hh = min (Elr, H,, Hh) for 
all the values of y.  The minimum values of H,, H ,  and Hh are attained at the values 
of y equal to 0, 00 and 0 respectively. The quantities H,,  H ,  and Hh are most sensitive 
in the mid-range of y.  

11. The case yt = 00, yb = y ,  0 < y < co. Each of H,, H,  and Hh increases with y 
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Y R, a, Rc a, R, 
0 12.0 0.00 27.1 2 3 0  12.0 
0.0001 12.1 0 1 5  27.1 2.30 12.1 
0.001 12.2 0 2 0  27.1 2.30 12.1 
0.01 12.8 0 4 8  27.2 2.31 12.5 
0 1  156 0 9 8  28.1 2.35 14.2 
0 4  2 0 8  1.55 303  2.48 17.3 
0.7 24.1 1.83 31.8 2.55 192 
1 26.4 2.03 32.9 2.63 20.4 
4 3 4 3  2.70 369 2.90 24.5 
7 36.3 2.88 37.9 2.98 25.5 

10 37.2 2.95 383  303  25.9 
100 3 9 2  3.10 3 9 3  3 1 0  2 6 9  

1000 394 3.1 1 394  3.10 27.1 
a2 4n2 n 4n2 n 27.1 

TABLE 1. Values of R, and a, with boundaries of different conductivity 

a, 

000 
0 1 5  
0 1 8  
0.35 
0.78 
1.23 
1.43 
1.60 
2.05 
2.14 
2.20 
2-28 
2.30 
2.30 

and reaches its peak a t  some value of y in the heighbourhood of y = 1 and then 
decreases with further increase in y.  H ,  = max (H,, H,, Hh) for all the values of y .  
The minimum values of H,, H ,  and Hh are attained a t  y = 0. 

111. The case yt = 0, Yb = y ,  0 < y d w. Each of H,, H,  and Hh seem to increase 
first with y and then goes up and down several times as y increases. 

(0.4 < yz < 0-7). H,  = max (H,, H,, Hh)  for all y < yz 

H, = max (H,, H,, Hh) for all y > y2. The rate of change of H,, H ,  and Hh with respect 
to y is seen to be smaller here than in the first two cases. 

IV. The case yb = w ,  yt = y ,  0 < y 6 00. The qualitative features of H,, H ,  and 
Hh for this case are similar to the corresponding ones in case 11. 

V. The case yb = 0, yt = y ,  0 < y < 00. The qualitative features of H,,  H ,  and Hh 
for this case are similar to the corresponding ones in case 111. 

The condition (4.13) has been computed numerically for different integers N and 
various values of $,, (0 d @,,I < 1 ) .  I n  all cases of N and $,, that have been 
investigated the condition (4.13) was found to be valid, with the exception of the case 
N = 2, $,, = 0 (rn + n).  This latter case corresponds to squares. Hence all three- 
dimensional solutions for N > 2 are unstable. For squares it was found that (4.13) 
does not hold for only those values of Yb and yt that yield H ,  > H,. Numerical 
computation of the expression (4.20) for cr2 a t  various values of $rl and & yields 
a negative cr2, provided that Y b  and yt are chosen such that H,  > H,. Numerical 
computation of the expression (4.19) for u2 a t  various values of yields also a 
negative v2, but yn and yt should now be chosen such that H,  > H,. 

The general results obtained in $4 together with the results discussed above 
conclude that rolls and squares are the only possible stable solutions. Rolls are the 
only stable solutions in the (Yb, yt)-space for which H,  > H,. Squares are the only 
stable solutions in the (yb, yt)-space for which H, Z H,. 

In  order to determine the stability boundary for rolls or squares in the (Yb, yt)-space 
coordinate system, the equation 

c2 = cl (equivalent to H,  = H,)  (5.13) 
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0 '  0.25 0.5 0.75 1 

7 b  
FIGURE 4. Stability boundary for the square cells in the (yb, yt)-space coordinate system. 

is solved numerically. The result is shown in figure 4. Squares are the stable solutions 
in the region r, which includes the origin, while rolls are the stable ones outside r. 
The stability boundary is seen to be symmetric with respect to 7, and yt. The region 
r can be bounded approximately by the lines yb = 0, yt = 0, yb+yt = 2, and 
yt = 7, f0.4. 

6. Discussion 
I n  formulating the present problem we have considered a horizontal layer bounded 

above and below by infinite half-spaces whose conductivities are constant and, in 
general, are different from that of the fluid. We used continuity of the temperature 
and the heat flux a t  the boundaries to derive the thermal boundary Conditions in 
terms of the two parameters 7, and yt. A different formulation of the thermal 
boundary conditions in terms of two Biot numbers B, = h,d/h and B, = h,d/h (h,  
and h, are the heat-transfer coefficients a t  the lower and upper boundaries respectively) 
can be done by applying a linear Fourier law for the heat transfer a t  the boundaries. 
The temperature boundary conditions then become 

a8 
az 
ae 
az 

- = B B , 8  a t  z = - + ,  

= B,8 at z = $ .  - 

The parameters B, and B, can be determined empirically for boundaries with 
different conductivities, and play the same role as 7, and yt. However, the qualitative 
features of the problem based on either formulation discussed above is expected to  
be unchanged. 

One of the results obtained in the present study is that R,, a,, H,, H,, Hh and the 
vertical component of velocity decrease with decreasing Yb or yt. Hence R, and a, 
are largest for isothermal boundaries, and H,, H,, Hh and u . z are smallest for 
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non-conducting boundaries. These conclusions are clearly consistent with one’s 
physical intuition about the problem. As the boundaries become more insulating in 
nature, given a temperatbe difference T,  - Tl across the layer, the perturbation heat 
flow out of the layer decreases, while the temperature gradient in the interior region 
away from the boundaries increases. This larger gradient leads to motion a t  a 
relatively smaller value of R,. Since the thermal stabilizing effect decreases, the 
stabilizing factor of viscosity becomes relatively more significant. Because convection 
favours the situation where the viscous dissipation is least, the horizontal length of 
the convection cells increases. Hence a, decreases and the vertical motion weakens, 
The associated vertical convective heat transfer in the fluid layer then clearly 
decreases. 

An interesting property of the stable solution discussed in this paper is that  the 
stable solution carries the maximum amount of heat. This result is, however, not 
surprising, since i t  has already been proved by Busse (1967) through an extremum 
principle. Busse’s proof is based on the assumption that the amplitude of convection 
is small, and i t  does not exclude the possibility that there may be more than one stable 
solution. This possibility, however, appears to be eliminated in the present problem 
through the results discussed in the previous sections. I n  particular, no hysteresis 
effect is found here. 

The uniqueness of the stable solution in the present problem implies that the 
realized solution is identical with the stable solution that maximizes the heat flux and 
must clearly be independent of the initial conditions. However, when the effect of 
the lateral boundaries is significant this result may no longer hold (Straus & Schubert 
1979), since the nonlinear effects can be dominated by the sidewall effects in that case. 

For each of the five cases described in $5,  we have found that there exists a critical 
value a,* in the range 1.23 < a,* < 2.30 such that for a, < a: the preferred flow pattern 
is that  of squares. However, for a, > a,*, the two-dimensional roll pattern is the 
preferred solution. The result that  either a square-cell pattern or a two-dimensional-roll 
pattern (but not both) is the only preferred form of the horizontal structure for given 
Yb and yt supports the idea that the simplest possible pattern appears to be preferred. 

The results of the effects of Yb and yt for the present convection problem in a porous 
medium are expected also to hold qualitatively in an ordinary medium. Beside the 
theoretical interest, the results may shed some light on the important and yet 
unsolved problem of the actual flow pattern of convection and heat transfer in the 
Earth’s upper mantle, where Yb and yt are neither very large nor small. The planform 
of mantle convection that is needed to generate the observed anomalies does not 
consist of rolls but is three-dimensional, with rising and sinking jets elongated in the 
direction of motion (McKenzie et al. 1980). The studies by McKenzie and his 
coworkers suggest that  the planform of mantle convection consists of square cells. 
If this is true, it could lead to  some new finding on, for example, the appropriate values 
of a, Yb and yt. It may then be of interest to extend the present analysis to  that for 
a more realistic model to determine also the quantitative aspect of the results, which 
could differ from those derived in this paper. 

Appendix A 
In  this appendix we derive the thermal boundary conditions for O1 and 0,. In  the 

spaces z < -4 and z 3 $, each of the variables 0: and 0; satisfies the Laplace equation. 
We now consider the following expansions for Og, 0,. in powers of e :  
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In  the order e$, either 0g, or SF, satisfies also the Laplace equation. For i = 1 the 
solutions Og,  and SF, that are bounded at infinity can be written as 

where A: and BF are constants and w(x, y) is the linear horizontal planform function 
for the solution 0,. Using (3.1) and (A 2) in (2.2), we have 

Using (A 2), (A 3) we find the boundary conditions (3.3) for the linear solution 8,. 
For i = 2, the solutions Og,  and Of, t,hat are bounded a t  infinity can be written as 

0g2 = Z A; exp (az) c1 c p  w1 wp + 8g2, 
I*-P 

Sf, = Z BE exp ( - az) c1 cpwl wp + 6f2, 
1*-p 

where the bar indicates the horizontal average and A; and B; are two more constants. 
It should be noted from (A 4) that  the horizontal dependence of 8g2 and Of2 is the 
same as that of 0,. Using (3.1) and (A 2) in (2.2) we have 

a a 
aZ -(82-62) = Ybz(0E2-8gz), 0,-6, = sg,-8g2 a t  z = -+, 

a a - 
- ( d 2 - 8 , )  = ytz(0f2-0f2), 0,-6, = 0;2-6;2 a t  z = 4. 
32 

Note that 6, = 0 a t  z = ++ because the horizontal mean of the boundary 
temperatures is given as an external parameter of the problem. Using (A 4), (A 5 )  
we find the boundary conditions given in (3.10) for the nonlinear solution 8,, where 
O,, introduced in (3.10) has the same form as f?,, provided that the horizontal 
dependence of 0, is multiplied by [2(a2 + K, . Kp) ] i .  

Appendix B 
The expression for R, can be written as 

N 

n--N 
Multiplying (B 1)  by c, and taking the summation C yields 

R, = -<@,(%. V W )  (B 2 )  

Using the fact that <@,(6*,.VB,)) = -+(0:V.u) = 0 and (OlA2@J =# 0, we find 
that R, = 0. 
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We will now show that the second average product in the right-hand side of (3 .15)  
vanishes. Using (3 .4) ,  (3.11) and (3 .12)  we have 

Since ( F D ( g 2 ) )  = - (g2DF) ,  ( B  3 )  simplifies to 

The integral expression ( w ~ w m w l w p )  in (B 4) is non-zero only if (3 .18)  holds. 
However, if (3.18) holds then 1 + $ I p + $ m l + $ m p  = 0. Therefore 

(0,*,(i5Q2 . VO,)) = 0. 

R E F E R E N C E S  

BUSSE, F. H.  1967 The stability of finite amplitude cellular convection and its relation to an 

BUSSE, F. H. & RIAHI, N. 1980 Nonlinear convection in a layer with nearly insulating boundaries. 

JOSEPH, D. D. 1976 Stability of Fluid Motions I and 11. Springer. 
LAPWOOD, E. R.  1948 Convection of a fluid in a porous medium. Proe. Camb. Phil. SOC. 44,508-521. 
MCKENZIE, D., WATTS, A,,  PARSONS, B. & ROUFOSSE, M. 1980 Planform of mantle convection 

beneath the Pacific Ocean. Nature 288, 442446. 
PALM, E., WEBER, J. E. & KVERNVOLD, 0. 1972 On steady convection in a porous medium. J .  

Fluid Mech. 54, 153-161. 
SCHLUTER, A., Lomz, D. & BUSSE, F. H. 1965 On the stability of finite amplitude convection. 

J .  Fluid Mech. 23,  129-144. 
SCHUBERT, G. & STRAUS, J. M. 1979 Three-dimensional and multicellular steady and unsteady 

convection in fluid-saturated porous media a t  high Rayleigh numbers. J .  Fluid Mech. 94,2538.  
STRAUS, J. M. 1974 Large amplitude convection in porous media. J .  Fluid Mech. 64, 51-63. 
STRAUS, J. M. & SCHUBERT, G. 1978 On the existence of three-dimensional convection in a 

rectangular box containing fluid-saturated porous material. J .  Fluid Meeh. 87, 385-394. 
STRAUS, J. M. & SCHUBERT, G. 1979 Three-dimensional convection in a cubic box of fluid-saturated 

porous material. J .  Fluid Mech. 91, 155-165. 
STRAUS, J. M. & SCHUBERT, G. 1981 Modes of finite-amplitude three-dimensional convection in 

a rectangular box of fluid-saturated porous material. J .  Fluid Mech. 103, 23-32. 
ZEBIB, A. & KASSOY, D. R. 1978 Three-dimensional natural convection motion in a confined 

porous medium. Phys. Fluids 21, 1-3. 

extremum principle. J .  Fluid Meeh. 30, 625-649. 

J .  Fluid Mech. 96, 243-256. 


