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The problem of finite-amplitude thermal convection in a porous layer with finite
conducting boundaries is investigated. The nonlinear problem of three-dimensional
convection is solved by expanding the dependent variables in terms of powers of the
amplitude of convection. The preferred mode of convection is determined by a
stability analysis in which arbitrary infinitesimal disturbances are superimposed on
the steady solutions. Square-flow-pattern convection is found to be preferred in a
bounded region I' in the (y,, y;)-space, where ¥, and y, are the ratios of the thermal
conductivities of the lower and upper boundaries to that of the fluid. Two-dimensional
rolls are found to be the preferred pattern outside I'. The qualitative features of the
convection problem appear to be essentially symmetric with respect to y, and y,. The
dependence of the heat transported by convection on ¥, and ¥, is computed for the
various solutions analysed in the paper.

1. Introduction

The present paper studies the problem of nonlinear thermal convection at small
amplitude in a horizontal porous layer with finite conducting boundaries.

The problem of thermal convection in a porous medium is simpler than the
corresponding one in an ordinary medium, since the equations of motion describing
convection in a porous layer are of lower order than those describing Bénard
convection. The qualitative features of thermal convection in a porous medium are,
however, the same as those in an ordinary medium. Hence the problem of thermal
convection in a porous medium is mathematically a simple one, which conveniently
can be used to study nonlinear effects such as the preferred flow pattern.

The linear stability for the onset of convective flow in a porous medium was first
investigated theoretically by Lapwood (1948). The subsequent nonlinear investiga-
tions of the problem such as those by Palm, Weber & Kvernvold (1972) and Straus
(1974) are based on the assumption that the upper and lower boundaries have infinite
thermal conductivity. Although this assumption is often well approximated in
laboratory experiments, many convection problems in engineering and geophysics do
not exhibit well-conducting boundaries, and the ratios y, and y, between the thermal
conductivities of the lower and upper boundaries and that of the fluid must be taken
into account as additional parameters.

The importance of the influence of the parameters vy, and y, on small-amplitude
nonlinear Bénard convection was first demonstrated by Busse & Riahi (1980,
henceforth referred to as BR), who considered the case where y, and v, are equal
(¥» = ¢ = 7) and assumed that the boundaries are nearly insulating (y < 1). They
found that the critical wavelength of the horizontal motion is proportional to ¥ 3 and
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that square-pattern convection is preferred in contrast with two-dimensional rolls
that represent the only form of stable convection in a symmetric layer with isothermal
boundaries.

The goal of the analysis of the present paper is to isolate the nonlinear properties
of thermal convection for arbitrary values of the parameters y,, and ,. An important
result of the present study is that there exist a bounded region I in (y,, v,)-space such
that the preferred convection pattern is that of squares for (y;, y,) €. The preferred
flow patternis, however, two-dimensional rolls for (y, v,) € . This result demonstrates
the enormous influence of the thermal boundary conditions on the preferred flow
pattern.

The additional and interesting effect of the lateral boundaries in a finite system
containing fluid-saturated porous material that have recently been studied for
isothermal upper and lower boundaries (Zebib & Kassoy 1978; Straus & Schubert
1978, 1979, 1981; Schubert & Straus 1979) is expected to have significant influence
on the realized flow pattern. This effect, however, is not considered here, since we
are interested, in the present investigation, in studying the already complicated
problem of the effect of arbitrary thermal-conducting upper and lower boundaries
on nonlinear processes. We therefore assume that the fluid layer is infinitely long in
the horizontal direction, which is appropriate for various applications in cases where
the horizontal length of the layer is large compared to its thickness. This assumption
enables us to understand the actual nonlinear properties and the convective motions
that are not influenced by the lateral boundaries, and provides the foundation on
which more detailed models can be built.

Sections 2—4 deal with the mathematical formulation of the problem, and the
general description of steady convection and stability analysis. The steady solutions
are discussed for various cases in §5, which is followed by some general discussion.

2. Mathematical formulation

We consider an infinite horizontal porous layer of depth d filled with fluid and
heated from below. The layer is bounded above and below by two half-spaces with
thermal conductivities A§ and A respectively. In the steady static state, a constant
heat flux traverses the system such that temperatures 7; and 7, are attained at the
upper and lower boundaries of the fluid. It is convenient to use non-dimensional
variables in which lengths, velocities, time and temperature are scaled respectively
by d, A/dpyc, d*pyc/A and (T,—T,) R7!. Here A is the thermal conductivity of the
porous medium (fluid—solid mixture), p, is the reference density of the fluid, ¢ is the
specific heat at constant pressure and R is the Rayleigh number (defined below). Then,
with the usual Boussinesq approximation that density variations are taken into
account only in the buoyancy term, the Darcy—Boussinesq equations are

B(%—l;+u.Vu>=—Vp+0z—u, (2.1a)
V.u=0, (2.1b)

a0 .
a—t+u.V0=Ru.z+V0. (2.1¢)

Here u is the velocity vector, p is the modified deviation of pressure from its static
value, 6 is the deviation of temperature from its static value, Z is a unit vector in
the vertical direction, B™' = vd?p,c/AK is the so-called Prandtl-Darcy number and
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R = pgK(T,—T,)dp,c/vA is the Rayleigh number, with f the coefficient of thermal
expansion, v the kinematic viscosity, K the Darcy permeability coefficient and g the
acceleration due to gravity.

The velocity vector uin (2.1) is defined according to Darcy’s law as an average over
the microscale of the porous medium. We shall assume that the microscale is small
enough compared with any scale size of the flow for u to remain a well-defined
quantity.

It is convenient to introduce a Cartesian system of coordinates, with the origin on
the centreplane of the layer and with the z-coordinate in the vertical direction. The
boundary conditions for 6 and u are

w.z=0 at z=+} (2.2a)
7] 06¢
—aa—:z:’)/b—az—b7 6:6% at z:—%’ (226)
00 e
a=*}/t%’ 6.—:6{3 at z:%’ (226)

where y, = A§/A, v, = Af/A, and 6§ and 6! describe the deviation from the static
temperature distribution in the spaces z < —§ and z =  respectively. Since we have
used the Darcy constitutive assumption in order to replace V2u with —u in (2.1), we
cannot impose boundary conditions on the tangential components of u. Equations
(2.2) correspond to finite conducting boundaries through which no flow occurs.

We shall restrict our attention to the case of infinite Prandtl-Darcy number, in
which case the left-hand side of (2.1a) vanishes. The physically appropriate value
B =0 follows from extraordinary small values of the permeability coefficient K in
porous material: in sand K = 0(107%) em?; in very porous fibre metals
K = 0(107%) em?.

The governing equations (2.1) can be simplified by using the general representation

u =580 +sy, (2.3a)
0=VxVxz, £=Vxz (2.3b)

for the divergence free velocity vector field u. By taking the vertical component of
the curl of (2.1a) it can be shown that the toroidal part V x zy of u must vanish for
B = 0. Taking the vertical component of the curl of the curl of (2.1a) and using (2.3)
in (2.1¢) yields the following equations:

A (VED+6) =0, (2.4a)
VZG-RAZ(D=5¢>.V9+%, (2.4b)

where A, = % + aa—;z
Equations (2.4) must then be solved subject to the boundary conditions (2.24),
(2.2¢) and ®=0 at z=+1 (2.5)

In the following sections we obtain the solutions by using the method of Schluter,
Lortz & Busse (1965), treating the amplitude € of convection as a small parameter.

6 _FLM 129
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3. Finite-amplitude steady convection

Using the energy method (Joseph 1976), it can be shown easily that small-amplitude
steady solutions yield the lowest Rayleigh number R for which non-decaying solutions
exist for the governing equations and the boundary conditions derived in §2. It is
therefore appropriate for our small-amplitude convection analysis to consider the
following expansions for §, ® and R in powers of ¢:

(9”(&)“2(&%'“’ (3.1)

R=Ry+eR,+e®R,+....
Upon inserting (3.1) into (2.4) and disregarding the quadratic terms, we find the

llnear prOb]em A2(V2q)1 +01) — 0’ (32@)
V26, — RyA, @, = 0. (3.2b)
The general solution of (3.2) with the boundary conditions
0
D, = <£—ayb> 0,=0 at z=-1L (3.3a)
0
o, =<£+ayt 6,=0 at z=1 (3.3b)

(see appendix A for the derivation of the thermal boundary conditions) can be written

' ()= 0

(We have introduced in (3.3) the horizontal wavenumber a of the linear planform
function w(x, y).) The function w actually has the representation

N N
w(x,y) = nEN CnW, = n=Z_N ¢, exp (0K, . 1), (3.5)

and satisfies the relation Agjw = —aPw, {ww = 1. (3.6)

Here an angle bracket indicates an average over the fluid layer, r is the position vector,
and the horizontal wavenumber vectors K,, satisfy the properties

K,.z=0, [K,/J=a K_,=—-K,. (3.7)
The coefficients ¢,, satisfy the conditions
T ocek=1, cE=c_,, (3.8)
n=—N

where the asterisk indicates the complex conjugate. The functions f and g introduced
in (3.4) are the unique solutions of the following system of equations:

(DP—a®) f=—g, <{fH=1 (D*—a%)g=—R,a%,
f=D—ay)g=0 at z=-—1 (3.9)
f=D+ay)g=0 at z=14,

where D = d/dz. The function f is also normalized so that {f?)> = 1. The system (3.9)
represents an eigenvalue problem with eigenvalue R, and the lowest value R, of R,
can be obtained after minimizing B, with respect to a (for given y, and yy).

I
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In the order €%, (2.2), (2.4) and (2.5) become
A V2D, +6,) =0 (3.10a)
V20,— RyA,®,— R, A, @, = 6D, .V0,, (3.105)
®,=0,= 660 —Ypbes =0 at z=-4 (3.10¢)
=f92=%+%025=0 at z =14, (3.104d)

where the bar indicates the horizontal average and 0,4 is defined in appendix A. See
also this appendix for the derivation of the thermal boundary conditions given by
(3.10¢), (3.104d).

The solvability conditions for the equations of higher order in € require us to define
the following special solutions 8, , and @, , of the linear system of equations (3.2)—(3.3):

91n> g(z)>

= : 3.1
()= () 310
Multiplying (3.10a) by @,,,, (3.10b) by — R;'6,,, adding and averaging over the whole

layer yields R, = 0 (appendix B). Equations (3.10) then yield

I,p=N

~

D, = b F(z, ¢1p) cicpwywy, + G(2), (3.124a)
L,p=—N,l+-p
I, p=N R R
DXA(z)+0, = — z [(D?—2a%(1 + ¢, )] F(2, 1) cre,wywy,,  (3.120)

lL,p=—N,l+-p
where bip = UK, . K,),

F is a function of z and ﬁlp, and G is a function of z only. These two functions satisfy
the following equations and boundary conditions:

[(D?—al)*— Rya2) F = a*(gDf¢, —fDg),
DG = —a2D(fy),
G=D( =0 at z=4=1

(3.13)

<6 as'yb>F <%+as'yt>F— 0 at z=d=4,

where ag = af2(1+¢,,)1
In the order €®, (2.2) become

A, (V2D 4+ 6,) = 0, (3.14a)
V20,— RyA, @, — R, A, D, = §®,.V0,+5P,.V0,. (3.14b)
Multiplying (3.14a) by ®F,, (3.14b) by — R;'05,, adding and averaging over the whole
layer yields g cor, A,®,> = (6%, (50, . V0,)> +(6%,(D, . V6,)>. (3.15)

The average product {07,(8®,.V6,)> has no contribution in (3.15) since it vanishes
(see appendix B). Equation (3.15) can be simplified to the form

R2F(')Cn = 13:' [_(éml+¢\mp)E+F’2] CmCle <wzwmwlwp>+026n
-

(m=—N,...,—1,1,....N), (3.16)
6-2
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where F, and F, are functions of &)zp and are given by

B =—at{gDf| D*—aZ] I, (3.17a)
F,=—a*{fg[D*—aZ] DF, (3.17b)
Gy = =2 {fyD*G), Ky = a*{ fg). (3.17¢)
The integral expression {w}w,w,w,) in (3.16) differs from zero only if
-K,+K,+K;+K,=0. (3.18)
This condition yields a much-simplified set of equations
N
R, Fye,= X Tyncpemcky (m=-—N,...,—1,1,...N), (3.19)
m=—N
where f LY +G, (m=+n), (3.20)

e 1 2L(Pmn)+ Gy (otherwise).
The function L(®,,) introduced in (3.20) is defined as
L(dip) = (1+ 1) Fu(Bip) + Faldip). (3.21)

The solutions of (3.19) and (3.8) are given below in the so-called ‘regular’ case, in
which all angles between two neighbouring K-vectors are equal:

1 ) 1 Xy
le)2= ... =[en]2 = 5N R, Fy = ﬁmgl T+ 11, _). (3.22)
Using the approximate relationship
H, = (wb) = o {fg) = a*(R—Ro) R;* { fo) (3.23)

for the heat transported by convection, we find from (3.20), (3.22) and (3.23):
in the case of two-dimensional solution in the form of rolls

N=1, H, = HOS(R—R)™ =2FL(1)+26,]"; (3.240)
in the case of square-pattern convection
N=2, ¢,=0, Hy= Hwares(R— R Y1 =4F3[L(1)+4L(0)+4G,]™"; (3.24b)
and in the case of hexagonal cells

N =3, 5512:‘523:5531:%7
Hﬂe"agons = H (R—R,)1=6F}L(1)+6G, +4LEZ)+4L(—1)]. (3.24¢)

4. Stability analysis

The analysis of the nonlinear steady-convection equations has shown that many
solutions could exist through the solvability conditions (3.19) even though this
manifold represents only an infinitesimal fraction of the manifold of the solutions (3.4)
of the linear problem. To distinguish the physically realizable solution among all
possible steady solutions, the stability of ®,6 with respect to arbitrary three-
dimensional disturbances ®,4 must be investigated. The equations for the time-
dependent disturbances with addition of a time dependence of the form exp (ot) are

given by AV D+ ) =0, (4.1a)
~ 0+ V2—RA,® = 8D .VO+8d . V4. (4.1b)
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When the expansions (3.1) is used in (4.1) it becomes evident that the stability
equations can be solved by an analogous expansion

d d, b,
) = 51) +e (62) + ... (4.2)
o gy gy

We also restrict ourselves to those disturbances for which £, is minimized with respect
to a. Then the most-critical disturbances are characterized by o, = 0. Using the
representation

w(x,y) = E Wy, (4.3)

for the horizontal dependence of the general three-dimensional disturbance, we
consider (4.1) in orders €" (rn = 1). The possibility of a non-vanishing positive
coefficient o, appears first in the order €2, where (4.1) become

Ay V2D, +F,) = 0, (4.4a)
—0,0,+ V20, R,A, D, — R,A, D, = 8D, .V0,+ 6D, .VF,+8D, V6, +8b,.V4,.
(4.4b)

Here the solutions #, and @, have the same form as the corresponding steady solutions
0, and @, provided that the horizontal dependence of the steady solutions is replaced
by the expression (4.3). The solutions @, and ,, however, have the form

I=c0, p=N R N
o, = )3 2F(z, 1) Gcpwwy,+Gz) T 28,0k, (4.5a)
l=—0, p=—N m=—N
l+-p
. l=cc, p=N . N
Oy = — z D> —ad) F (2,015 i cpwywy,—D*G(z) X 28,ch. (4.5b)
l=—cw0, p=—N,l+—-p m=—N

Multiplying (4.4a) by ®F,, (4.4b) by — R;16F,, adding and averaging over the whole
layer yields the following set of equations:

—0,{g*> ¢y + R, K0y,

—Gi[eten T @it +eti) |+ T (= @ity BHE

X (€ €€+ Cp €10+ i) WHw,, wyw > (4.6)
Using (3.18)—(3.19) in (4.6) yields
o5 {g%) &y tey, g TomChém =0, (4.7a)
m=—N

where Tom = Tom+Ty —m (4.75)

Using (3.20) in (4.7b), we find that the matrix T.m has the symmetries
Tom=Tnn=To =T m, (4.8a)
T,,=T, (m=-N,...,—11,..N). (4.8b)

Using (4.8) and following either Schluter et al. (1965) or BR, it follows that N
eigenvalues o, are zero and the rest of the eigenvalues are real and satisfy the
characteristic equation

det [0y (9> Sy + Tmelhal =0 (mom = 1,..., ). (4.9)
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This equation is a polynomial equation in o, of degree N of the form

N
Y a0} =0, (4.10)
n=0
where ay = (g,
N o~
ay1= X Tnnlcnlzx (4.11)
n=1
N I o~ o~ o~
an-2= X (TanTnm—Tom Tnn)lcal lonl®
n,m=1
m>n
The coefficient a y is clearly positive. Using (3.8), (3.20), (3.22) and (4.7b) we find that
an_y =T, = KRPYS. (4.12)

Using (3.17¢), (3.23) and the fact that H_ is positive, it follows that Fj is positive.
It is also expected that RIS is positive (as the results in §5 indicate). Hence ay_,
is positive. Since all the roots of (4.10) are real and the coefficients ay and a,_, are
both positive, we conclude from the sign rule of Descartes for polynomials that at
least one root of (4.10) is positive, provided that the coefficient a ,,_, is negative. Hence
a steady solution (N > 1} is unstable if

an_y <0. (4.13)
Equation (4.13) clearly holds if
Tom > Ton >0 (m>n). (4.14)
For N = 1 the two-dimensional flow in the form of rolls, (4.9), yields
oM (") = — Fy REOV. (4.15)

Hence o5°"® < 0 and rolls are stable.

For three-dimensional flow in the form of squares (N = 2), (4.9) implies that
squares are stable only if the condition (4.13)} does not hold.

So far the analysis has been restricted to disturbances that coincide with the basic
vectors of the steady motion. We now consider the stability of the steady motion
with respect to disturbances in the form of rolls that are not coincident with the basic
vector of the steady motion. We define K, to be the wavenumber vector of such
disturbances. The horizontal dependence of disturbances can be written as

l\'M*‘

&b, (4.16a)

1

D(x,y) = .

where W, = exp (1K, .r). (4.16b)

Multiplying (4.4 a) by f}, (4.4b) by — R} gw¥, adding and averaging over the layer
yields the following set of equations:

~30,{g®> &+ Ry Fy ¢, = G, &, + lE [— (qgml + q’smp) F+ K] lcmalcp <u~);kwmﬁ)lwp>
-»
+ € 8y KWF Wy, )] (4.17)
For the steady regular solutions, (4.17) simplifies to

1 X A
—30,{g*> + R, Fy = G1+N 2 L(grm)- (4.18)
m=—N
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For the steady two-dimensional solution in the form of rolls, (4.18) yields
03<g*> = L(1) =2 L($1) + L(— $1)] (4.19)

For the disturbance rolls that are inclined at an angle of 90° to the basic wavevector
K, of the steady motion (¢,, = 0), (4.19) yields a positive o, provided that the
condition (4.13) does not hold. Therefore steady rolls are clearly unstable if the steady
squares are stable or vice versa.

For the steady solution in the form of squares, (4.18) yields

7oy = A1) +2L(0) ~ Lig,) — L{— ) = L) — L(— o), |

(4.20)
where |§£r2| = 1_¢$1)%-

5. Steady solutions
5.1. The case of infinitely conducting boundaries

In this subsection we specialize the analysis of §§3 and 4 to the case where the
boundaries are isothermal. y,, = v, = o0 and we have the following results:

f(z) =2t cosmz, g(z) = (n®+a?)2} cosmz,
Ry=a ¥m+a?? R,=4n® oa,=m,
G(z) = %ﬂ sin 27z, (5.1)

q’;lp sin 271z
2[4+2 1'*'¢lp (1+¢lp)2]

The function L((ﬁ,p) defined in (3.21) and the constants G, and ¥, become
Lid )= TB+d,) (1=d,)
(P1p) 3 =h—,
4+2(1+ @)+ (1+ ¢yp) (5.2)
G, =2n% F, =27
Using (3.24) and (5.2), we find
Hgolls — 2(R_4"2)’ quuares — 2§(R—47T2),

ngxagons 1/05_9 (R 47.’.2)

F(z, ¢lp

(5.3)

clearly rolls exhibit a higher heat transport than either squares or hexagons.
The condition (4.14) becomes
2m8(3+ é\mn) (1 _gﬁmn)2 +27T8(3 ¢mn ( +¢mn
B 2

48+ >4 > 0 (m £ n).

(5.4)

Equation (5.4) clearly holds since 0 < @,,,,, < 1. Hence all three-dimensional solutions
are unstable and the only stable flow pattern is that of rolls. This result is identical
with that obtained by Schluter et al. (1965) for the case of an ordinary medium. The
rolls are also stable with respect to any disturbance which is inclined at an arbitrary
angle to the basic wavevector of the steady motion, since (4.19) gives a negative o,
for any 4,, (0 < el < 1).
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5.2. The case of poorly conducting boundaries

We now consider the other extreme case where the boundaries are poorly conducting.
We avoid to consider the case of zero-conducting boundaries since, as was pointed
out in BR, it is physically unrealistic.

We shall discuss briefly the finite-amplitude analysis and the main results of the
problem for the case where y, =7y, =7y < 1. The reader is referred to BR for
additional details and background regarding the nonlinear convection in a layer with
such boundaries.

As in BR, it is found again that the functional dependence of the value . on y
that minimizes R is y%. Thus it is assumed that a = 7y, where 7 is a constant of order
unity. The linear analysis in BR, as well as in the present study, demonstrates that
the value 7, is independent of . It turns out that the constant 4 = ¥4 could be used
as an additional perturbation parameter and the solutions @,,6,, can be obtained
in terms of a series in powers of u:

D, O oY
(57) = Cam )+l g )+ (5.5)
and analogous expression for R, . The analysis can be carried out in direct analogy

to that discussed in BR, and we find the following results:

fl2) = (1) o =g — 2 + 82" = ohg) +ole?), |

(5.6a)
9(2) = 1+ (4 —1+ ko) +o(u?), J
2 .
Ry = 1201+ X4 a2 +ow?), R, = 12[1+3@} Y31+ o0(u?),
« (5.6b)
Ao = (%)%7%’
a2
G(z) = 502 — 1+ o),
\ (5.6¢)
~ a A
P, gy = 5 (— B+ B =) by
The function L(élp) and the constants ¢, and F; are given as
L($1p) = th' 3y, 5.7)
Gy = st By =t '
Using (3.24) and (5.7) we find
HioUs = §(R—R,), Hiuwsees = 2(R—R,), (5.8)
chlexa.gons — %(R—Rc). )

Equations (5.8) indicate that squares exhibit a higher heat transport than either rolls
or hexagons.

According to (4.15) rolls are stable. For squares conditions (4.13) or (4.14) does not
hold which implies that squares are also stable. However, by the result obtained in
§4, rolls become unstable with respect to disturbance rolls that are inclined at an angle
of 90° to the basic vector of the steady rolls. In fact the growth rate given by (4.19)

becomes .
03 <{g?) = ' (1 —49%,), (6.9)
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which shows clearly that o, has the largest positive value for ¢,, = 0. This result gives
anindication of the preferred flow pattern, which consists of square cells (superposition
of two roll solutions at a right angle). The same arguments and analysis discussed
in BR could be carried out here to conclude that squares are the preferred flow pattern
for the case discussed above.

5.3. The case of arbitrary conducting boundaries

We now consider the general case where the boundaries have arbitrary thermal
conductivity. The solutions to (3.9) and (3.13) are

4
f@) = Z d;exp (r;2),

=1

4
9(z) = aR T (—1)'d; exp (r;2),
i=1
4
F(z, ¢1p) = 1:§1 {A; exp (2r;2)+ B; exp[(r; +7441) 2 +dypg €XP (ri452)}, (5.10)

4

G(z) =3 [Ai+4 exp (27-1:2) +d1:+s 24—1:]’
i=1

1.1 13

where r=—ry=r;=(a+aRl)t =1, = (a®—aRy),
1.1 1 1
Te = —Tg = (ag'l'asR:))zv T = =Ty = (ag_asR:))z'

The expressions for the coefficients d; (1 =1,...,12), 4,(i=1,...,8) and
B; (¢ =1,...,4) introduced in (5.10) are lengthy and are not given in this paper. The
complete expressions for these as well as the functions L((ﬁlp), G, and K, are given
in an internal report which can be made available to the reader upon request.

When the general solutions f(z) and g(z) given in (5.10) are used in the boundary
conditions and the normalization condition for f(z) given in (3.9), they yield the
expressions for d; (: = 1,...,4) and the following equation for R, «, v, and v,:

di(—ri+ayy) exp (—iry) +dy(r,—ayy) exp (—ir,)
+dy(ry +ayy) exp (3r1) —dy(ro+oyy) exp (3ry) = 0. (5.11)

R, is thus a complicated implicit function of a, y, and y,, through the equation (5.11),
and numerical computations are required to determine Ry(«) and R, for given y, and
vp- The computations are based on a method of half-interval and were carried out
at the Computing Centre of the University of Illinois. Numerical computations of R,
for various values of y,, and y; demonstrate that R, is symmetric with respect to y,,

and ;: Bo(e, vp, 7)) = Bo(@, ¥, Vp)- (5.12)

The three most interesting special cases are as follows.

(i) Both boundaries have the same conductivity y, ¥y, = ¥y, = ¥. Neutral curves for
values of y = 0,1,4 and oo are shown in figure 1. The results for y =0 and y = «©
are clearly consistent with the expressions for B, given in (5.1) and (5.6). In the actual
computations for this case and the next two, the value of 10'° is chosen for co.

(ii) One of the boundaries (say the upper one) is non-conducting, the other has
arbitrary conductivity v, v; = 0,7y, = v. Neutral curves for values of y = 0, 1,4, and
oo are shown in figure 2.

(iii) One of the boundaries (say the upper one) has infinite conductivity, the other
has arbitrary conductivity y, y, = o0, v, = v. Neutral curves for the same four values
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Ficure 1. Neutral curves for different conductivity ratios y in the case y, =y, = y.
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Fieure 3. Neutral curves for different conductivity ratios ¥ in the case y, = o, y, = 7.

of y as considered in other cases are shown in figure 3. The value of R, for a given
a in this case is clearly larger than the corresponding one in case (ii). The functional
dependence of &, with respect to @ in case (i) is seen to be approximately intermediate
between those in the other two cases.

The minimum value R, of R, with respect to « attained at some a = «, for given
vy and 7, is obviously of importance. Values of R, and «, for different values of vy,
and ¥y, (for the three cases defined above) are obtained by an additional modified
method of half-interval and are presented in table 1. From these results and (5.12)
it is seen that B, increases with either yy, or y, or both. Thus the most-stable situation
corresponds to infinite conducting boundaries, and the most-unstable one corresponds
to insulating boundaries. R, is also seen to be most sensitive to y, and vy, in the
mid-range of these parameters.

Using (5.10) in (3.17), (3.21) and (3.24), the values of the heat-transfer coefficients
H,, H; and H, are computed for the five different cases and are presented in table
2. The main results for each of these cases are as follows.

1. The case yp, =7y, =7v, 0<y < oo. Each of the quantities H., H; and H,
increases with y and reaches its peak at some value of y in the neighbourhood of y = 1
and then decreases with further increase in y. H, = max(H,, Hg, H,) for all
vy<v,(1 <y, <4). H = max (H, H,, H,) for all y > y,. H, = min (H_, H,, H,) for
all the values of y. The minimum values of H,, H; and H,, are attained at the values
of y equal to 0, co and 0 respectively. The quantities H,, H, and H;, are most sensitive
in the mid-range of .

II. The case y, = o0, vy, =7y, 0 <y < . Each of H,, H; and H,, increases with vy



166 N. Riahi

Yo=Y=7V Yo =7 Yy =0 Yo=77=0

Y RC ac RC a(! RC ac
0 12:0 0-00 271 2:30 12:0 0-00
0-0001 121 015 271 2:30 121 015
0-001 122 0-20 271 2:30 121 018
0-01 128 048 27-2 2:31 125 035
01 156 0-98 281 2-35 142 078
04 20-8 1’55 30-3 248 17-3 1-23
07 24-1 1-83 31-8 2:55 192 1-43
1 26:4 2:03 329 263 204 1-60
4 34-3 270 369 290 24'5 2:05
7 36-3 288 379 2:98 25'5 214
10 372 295 383 303 259 2:20
100 39-2 310 393 310 269 228
1000 39-4 311 394 310 271 2:30
Ie'e} 472 i 4m? i 271 2:30

TaBLE 1. Values of R, and a, with boundaries of different conductivity

and reaches its peak at some value of v in the heighbourhood of y =1 and then
decreases with further increase in y. H, = max (H, H,, Hy) for all the values of y.
The minimum values of H,, H, and H, are attained at y = 0.

I11. The case y, =0, vy, =7y, 0 <y < w. Each of H,, H, and H, seem to increase
first with y and then goes up and down several times as y increases.

H, =max(H,H, H,) forally<vy, (04<y,<0T7).

H, = max (H,, H,, Hy) for all y > v,. The rate of change of H, H  and H, with respect
to 7y is seen to be smaller here than in the first two cases.

1V. The case yy, = 0, v, =y, 0 < v < . The qualitative features of H., H, and
H, for this case are similar to the corresponding ones in case II.

V. The case y, = 0, y; = v, 0 < ¥ < 0. The qualitative features of H,, H, and Hy,
for this case are similar to the corresponding ones in case ITI.

The condition (4.13) has been computed numerically for different integers N and
various values of @,,, (0 < |@,l < 1). In all cases of N and ¢,,, that have been
investigated the condition (4.13) was found to be valid, with the exception of the case
N=2,¢,,, =0 (m % n). This latter case corresponds to squares. Hence all three-
dimensional solutions for N > 2 are unstable. For squares it was found that (4.13)
does not hold for only those values of ¥, and vy, that yield H, > H,. Numerical
computation of the expression (4.20) for o, at various values of ¢,; and @,, yields
a negative o,, provided that vy, and y, are chosen such that H > H,. Numerical
computation of the expression (4.19) for o, at various values of ¢,, yields also a
negative o,, but y, and y, should now be chosen such that H, > H,.

The general results obtained in §4 together with the results discussed above
conclude that rolls and squares are the only possible stable solutions. Rolls are the
only stable solutions in the (yy, ¥;)-space for which H,. > H,. Squares are the only
stable solutions in the (v, y,)-space for which H, > H,.

In order to determine the stability boundary for rolls or squares in the (yy, y;)-space
coordinate system, the equation

T, =T, (equivalentto H,= H,) (5.13)
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FicURE 4. Stability boundary for the square cells in the (y, y,)-space coordinate system.

is solved numerically. The result is shown in figure 4. Squares are the stable solutions
in the region I', which includes the origin, while rolls are the stable ones outside I".
The stability boundary is seen to be symmetric with respect to v, and y,. The region
' can be bounded approximately by the lines vy, =0, y, =0, y,+7v,=2, and
Ve =7p104

6. Discussion

In formulating the present problem we have considered a horizontal layer bounded
above and below by infinite half-spaces whose conductivities are constant and, in
general, are different from that of the fluid. We used continuity of the temperature
and the heat flux at the boundaries to derive the thermal boundary conditions in
terms of the two parameters v, and v,. A different formulation of the thermal
boundary conditions in terms of two Biot numbers By, = h,d/A and B, = hd/A (hy,
and h, are the heat-transfer coefficients at the lower and upper boundaries respectively)
can be done by applying a linear Fourier law for the heat transfer at the boundaries.
The temperature boundary conditions then become

(6.1)
%=Bt0 at z=4¢

The parameters B, and B, can be determined empirically for boundaries with
different conductivities, and play the same role as y,, and y;. However, the qualitative
features of the problem based on either formulation discussed above is expected to
be unchanged.

One of the results obtained in the present study is that B, a., H,, H, H, and the
vertical component of velocity decrease with decreasing vy, or y;. Hence R, and «
are largest for isothermal boundaries, and H,, H,, H, and u.z are smallest for
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non-conducting boundaries. These conclusions are clearly consistent with one’s
physical intuition about the problem. As the boundaries become more insulating in
nature, given a temperature difference 7, — 7] across the layer, the perturbation heat
flow out of the layer decreases, while the temperature gradient in the interior region
away from the boundaries increases. This larger gradient leads to motion at a
relatively smaller value of E.. Since the thermal stabilizing effect decreases, the
stabilizing factor of viscosity becomes relatively more significant. Because convection
favours the situation where the viscous dissipation is least, the horizontal length of
the convection cells increases. Hence «, decreases and the vertical motion weakens.
The associated vertical convective heat transfer in the fluid layer then clearly
decreases.

An interesting property of the stable solution discussed in this paper is that the
stable solution carries the maximum amount of heat. This result is, however, not
surprising, since it has already been proved by Busse (1967) through an extremum
principle. Busse’s proof is based on the assumption that the amplitude of convection
issmall, and it does not exclude the possibility that there may be more than one stable
solution. This possibility, however, appears to be eliminated in the present problem
through the results discussed in the previous sections. In particular, no hysteresis
effect is found here.

The uniqueness of the stable solution in the present problem implies that the
realized solution is identical with the stable solution that maximizes the heat flux and
must clearly be independent of the initial conditions. However, when the effect of
the lateral boundaries is significant this result may no longer hold (Straus & Schubert
1979), since the nonlinear effects can be dominated by the sidewall effects in that case.

For each of the five cases described in §5, we have found that there exists a critical
value a¥ in the range 1-23 < a¥ < 2:30 such that for «, < af the preferred flow pattern
is that of squares. However, for a, > af, the two-dimensional roll pattern is the
preferred solution. The result that either a square-cell pattern or a two-dimensional-roll
pattern (but not both) is the only preferred form of the horizontal structure for given
vy, and y, supports the idea that the simplest possible pattern appears to be preferred.

The results of the effects of y,, and y; for the present convection problem in a porous
medium are expected also to hold qualitatively in an ordinary medium. Beside the
theoretical interest, the results may shed some light on the important and yet
unsolved problem of the actual flow pattern of convection and heat transfer in the
Earth’s upper mantle, where y,, and v, are neither very large nor small. The planform
of mantle convection that is needed to generate the observed anomalies does not
consist of rolls but is three-dimensional, with rising and sinking jets elongated in the
direction of motion (McKenzie ef al. 1980). The studies by McKenzie and his
coworkers suggest that the planform of mantle convection consists of square cells.
Ifthisis true, it could lead to some new finding on, for example, the appropriate values
of a, v, and y,. It may then be of interest to extend the present analysis to that for
a more realistic model to determine also the quantitative aspect of the results, which
could differ from those derived in this paper.

Appendix A

In this appendix we derive the thermal boundary conditions for &, and ,. In the
spaces z < —3}and z > §, each of the variables 0§ and 6¢ satisfies the Laplace equation.
We now consider the following expansions for 8¢, 8¢ in powers of ¢:

520
<0$ =X\ @
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In the order €', either 6§, or 6f, satisfies also the Laplace equation. For i = 1 the
solutions 65, and 6§, that are bounded at infinity can be written as

0%, = A§ exp (xz) w(x, y),
b1 1 €Xp ) (A2)
0% = Bf exp (—az) w(z, y),

where Af and Bf are constants and w(zx, y) is the linear horizontal planform function
for the solution 6,. Using (3.1) and (A 2) in (2.2), we have

26, ]

_*='}’b52‘0%1’ 0, =068, at z=-—4

0z (A 3)
20, 0 o o 1
’é;='}’t£0w 0,=0; at z2=4%

Using (A 2), (A 3) we find the boundary conditions (3.3) for the linear solution 6,.
For ¢ = 2, the solutions 6§, and 6§, that are bounded at infinity can be written as

05, = T Afexp(az)c,c ww,+ 05,

l¥—p (A 4)
0f, = X Bfexp(—az) clc,pwlwp+5§’2,

l+-p

where the bar indicates the horizontal average and A§ and B§ are two more constants.
It should be noted from (A 4) that the horizontal dependence of 8¢, and 8¢, is the
same as that of 6,. Using (3.1) and (A 2) in (2.2) we have

0 - 0 ~ = _
= (0,—0,) = yo - (05— 0%,), 0,—0, =05,—08, at z=—},
0z 0z
5 5 (A 5)
5(02“‘92) = '}’té;(g?z_afz)’ 02_92 = 0?2“952 at z=14.

Note that 6,=0 at z= 4} because the horizontal mean of the boundary
temperatures is given as an external parameter of the problem. Using (A 4), (A 5)
we find the boundary conditions given in (3.10) for the nonlinear solution 6,, where
f,, introduced in (3.10) has the same form as @,, provided that the horizontal
dependence of 8, is multiplied by [2(a?+K;.K,)].

Appendix B

The expression for R, can be written as

B, = —<6,,(80,.V0,)) (K018 @: )7 B1)
N
Multiplying (B 1) by ¢, and taking the summation ¥ yields
n=—N
R, = —<6, (8P,. V01)> (<01 A2®1>)_1‘ (B 2)

Using the fact that <{0,(8®,.V60,)> = —-31{(62V.u) =0 and {6,A,®,) + 0, we find
that R, = 0.
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We will now show that the second average product in the right-hand side of (3.15)
vanishes. Using (3.4), (3.11) and (3.12) we have

<0;""(6¢2V01)> =—a lz CmCiCp ¢ml+¢mp <g2DF> <wnw wlwp>
*-p

+a2l E Cm clcp(l +§£lp) <D(g2) F> <w:wmwlwp>- (B 3)
+-p

Since {FD(g*)) = —<{g*DF), (B 3) simplifies to

{01.(8D,.V0,)) =—a* XL Cnolp (1+ Gip+ Gt + Bmp) KG2DFD (whwyy wyw,.
+-p
(B 4)

The integral expression {w}Xw w,wp> in (B 4) is non-zero only if (3.18) holds.
However, if (3.18) holds then 1+¢lp+¢m,+¢mp = (. Therefore

<01n 6(1)2 . V91)> =
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